精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x-3)=log5
x6-x
(3≤x≤5).
(1)求函数f(x)解析式及定义域;
(2)求函数f(x)的反函数f-1(x);
(3)若f(x)≥log5(2x),求x的取值范围.
分析:(1)设t=x-3,则x=t+3,由条件求得f(t) = log5
3+t
3-t
,求得t的范围,可得函数f(x)解析式及定义域
(2)设y=f(x) = log5
3+x
3-x
,求得x=
3(5y-1)
5y+1
,可得f-1(x)=
3(5x-1)
5x+1
,再求得原函数的值域,即为反函数的定义域.
(3)f(x)≥log5(2x)?
3+x
3-x
≥2x>0
0≤x≤2       
,由此求得x的范围.
解答:解:(1)设t=x-3,则x=t+3.∵f(x-3) = log5
x
6-x
,∴f(t) = log5
3+t
3-t
.…(1分)
∵3≤x≤5,∴0≤t≤2.由
3+t
3-t
>0
0≤t≤2
,求得0≤t≤2.…(2分)
于是f(x) = log5
3+x
3-x
,且定义域为[0,2].…(1分)
(2)设y=f(x) = log5
3+x
3-x
,则
3+x
3-x
=5y
,即x=
3(5y-1)
5y+1

∴f-1(x)=
3(5x-1)
5x+1
.…(2分)
∵0≤x≤2,∴1≤3-x≤3,∴
3+x
3-x
=-1+
6
3-x
∈[1,  5]

从而log5
3+x
3-x
∈[0,  1]

故函数f(x)的反函数为f-1(x)=
3(5x-1)
5x+1
(0≤x≤1).…(2分)
(3)f(x)≥log5(2x)?
3+x
3-x
≥2x>0
0≤x≤2       
?
0<x≤1或x≥
3
2
0≤x≤2           
?
 0<x≤1或
3
2
≤x≤2
,即x的范围为 (0,1]∪[
3
2
,2].…(4分)
点评:本题主要考查用换元法求函数的解析式,求一个函数的反函数,对数不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案