已知椭圆C:
的离心率与等轴双曲线的离心率互为倒数,直线
与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
(Ⅰ)
;(Ⅱ)详见解析
解析试题分析:(I)由等轴双曲线的离心率为
,可得椭圆的离心率
,因为直线
,与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,利用点到直线的距离公式和直线与圆相切的性质可得,
,再利用
即可得出;(II)分直线AB的斜率不存在与存在两种情况讨论,①不存在时比较简单;②斜率存在时,设直线AB的方程为
,由椭圆
与椭圆的方程联立,利用根与系数的关系及斜率公式,再利用
即可证明
试题解析:(Ⅰ)由题意得
,
2分
即
,解得
4分
故椭圆C的方程为
5分
(Ⅱ)当直线AB的斜率不存在时,设A
,则B
,由k1+k2=2得
,得
7分
当直线AB的斜率存在时,设AB的方程为y=kx+b(
),
,![]()
得
,
9分![]()
![]()
即![]()
由
,![]()
11分
即![]()
故直线AB过定点(―1,―1) 13分
考点:直线与圆锥曲线的关系;椭圆的标准方程
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
:
的离心率为
,点
为其下焦点,点
为坐标原点,过
的直线
:
(其中
)与椭圆
相交于
两点,且满足:
.![]()
(1)试用
表示
;
(2)求
的最大值;
(3)若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
在抛物线
:
上.
(1)若
的三个顶点都在抛物线
上,记三边
,
,
所在直线的斜率分别为
,
,
,求
的值;
(2)若四边形
的四个顶点都在抛物线
上,记四边
,
,
,
所在直线的斜率分别为
,
,
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(
)的右焦点为
,离心率为
.
(Ⅰ)若
,求椭圆的方程;
(Ⅱ)设直线
与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
.![]()
(1)椭圆
的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线
与
轴交点的位置与
无关;
②若∆
面积是∆
面积的5倍,求
的值;
(2)若圆
:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知定点
、
,动点N满足
(O为坐标原点),
,
,
,求点P的轨迹方程.![]()
(2)如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,![]()
(ⅰ)设直线
的斜率分别为
、
,求证:
为定值;
(ⅱ)当点
运动时,以
为直径的圆是否经过定点?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com