精英家教网 > 高中数学 > 题目详情
    设椭圆的中心在原点O,一个焦点为F01),长轴和短轴的长度之比为t.

    1)求椭圆的方程;

    (2)设经过原点且斜率为t的直线与椭圆在y轴右边部分的交点为Q,点P在该直线上,且,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.

 

答案:
解析:

答案:解:(1)椭圆方程为;

    (2)点P的轨迹为抛物线x2=y在直线右侧的部分和抛物线在直线左侧的部分.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.
(1)求该椭圆的标准方程;
(2)若PB2⊥QB2,求直线l的方程;
(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,2
7
],求△B2PQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题

如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)B1作直线交椭圆于PQ两点,使PB2QB2,求△PB2Q的面积.

 

查看答案和解析>>

同步练习册答案