精英家教网 > 高中数学 > 题目详情
椭圆的中心在原点O,短轴长为,左焦点为F(-c,0)(c>0),相应的准线l与x轴交于点A,且点F分的比为3,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程;
(2)若PF⊥QF,求直线PQ的方程.
【答案】分析:(1)设椭圆的方程为 设=1,,由已知得到-c=3c,又c2+(2=a2,解得 a,c,最后写出椭圆的方程和离心率.
(2)设直线PQ的方程为y=k(x+4),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量垂直的坐标关系公式即可求得k值,从而解决问题.
解答:解:(1)设=1,则c2+(2=a2,准线l:x=
由点F分的比为3,得-c=3c,
解得a2=4,c=1,得椭圆方程为:.(5分)
(2)设PQ:y=k(x+4),P(x1,y1),Q(x2,y2),F(-1,0).
∵PF⊥QF,∴(x1+1)(x2+1)+y1y2=0,
即(x1+1)(x2+1)+k2(x1+4)(x2+4)=0,
(1+k2)x1x2+(1+4k2)(x1+x2)+(1+16k2)=0(4分)
联立,消去y得(3+4k2)x2+32k2x+64k2-12=0
∴x1x2=,x1+x2=(4分)
代入化简得8k2=1,∴k=±
∴直线PQ的方程为y=(x+4)或y=(x+4).(2分)
点评:本题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.解答的关键是利用方程思想利用设而不求的方法求出k值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Γ的中心在原点O,焦点在x轴上,直线l:x+
3
y-
3
=0与椭圆Γ交于A、B两点,|AB|=2,且∠AOB=
π
2

(1)求椭圆Γ的方程;
(2)若M、N是椭圆Γ上的两点,且满足
OM
ON
=0,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在x轴上,过右焦点F的直线与右准线交于点D,与椭圆交于A、B两点,右准线与x轴交于C点,若|
FC
|,|
CD
|,|
FD
|
成等差数列,且公差等于短轴长的
1
6

(1)求椭圆的离心率; 
(2)若△OAB的面积为20
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知椭圆的中心在原点O,离心率e=
3
2
,短轴的一个端点为(0,
2
),点M为直线y=
1
2
x与该椭圆在第一象限内的交点,平行于OM的直线l交椭圆于A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•通州区一模)已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为
10
,过焦点F作直线l,交椭圆于A,B两点.
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)若椭圆上有一点C,使四边形AOBC恰好为平行四边形,求直线l的斜率.

查看答案和解析>>

同步练习册答案