【题目】已知函数
.
(1)若曲线
在
处切线与坐标轴围成的三角形面积为
,求实数
的值;
(2)若
,求证:
.
科目:高中数学 来源: 题型:
【题目】已知平面上两定点M(0,﹣2)、N(0,2),P为一动点,满足![]()
|
||
|
(I)求动点P的轨迹C的方程;
(II)若A、B是轨迹C上的两不同动点,且
λ
.分别以A、B为切点作轨迹C的切线,设其交点Q,证明
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知
是曲线
:
上的动点,将
绕点
顺时针旋转
得到
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
,
的极坐标方程;
(2)在极坐标系中,点
,射线
与曲线
,
分别相交于异于极点
的
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,若椭圆经过点
,且△PF1F2的面积为2.
(1)求椭圆
的标准方程;
(2)设斜率为1的直线
与以原点为圆心,半径为
的圆交于A,B两点,与椭圆C交于C,D两点,且
(
),当
取得最小值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率
,且圆
经过椭圆C的上、下顶点.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相切,且与椭圆
相交于M,N两点,证明:
的面积为定值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,
分别是椭圆
:![]()
的左、右焦点,且椭圆
上的点到点
的距离的最小值为
.点M、N是椭圆
上位于
轴上方的两点,且向量
与向量
平行.
(1)求椭圆
的方程;
(2)当
时,求△
的面积;
(3)当
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点.
![]()
(1)若
为线段
上的动点,证明:平面
平面
;
(2)若
为线段
,
,
上的动点(不含
,
),
,三棱锥
的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com