已知中心在坐标原点焦点在
轴上的椭圆C,其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
(Ⅰ)
(Ⅱ) 存在这样的直线
,其斜率
的取值范围是![]()
解析试题分析:(Ⅰ)由题意可设椭圆的标准方程为
1分
则由长轴长等于4,即2a=4,所以a=2. 2分
又
,所以
, 3分
又由于
4分
所求椭圆C的标准方程为
5分
(Ⅱ)假设存在这样的直线![]()
,设
,
的中点为![]()
因为
所以
所以
①
(i)其中若
时,则
,显然直线
符合题意;
(ii)下面仅考虑
情形:
由
,得
,
,得
② 7分
则
. 8分
代入①式得,即
,解得
11分
代入②式得
,得
.
综上(i)(ii)可知,存在这样的直线
,其斜率
的取值范围是
13分
考点:椭圆方程性质及直线与椭圆的位置关系
点评:直线与椭圆相交时常将直线与椭圆联立方程组,利用韦达定理找到根与系数的关系,进而将
转化为点的坐标表示,其中要注意条件
不要忽略
科目:高中数学 来源: 题型:解答题
已知抛物线E:y2= 4x,点P(2,O).如图所示,直线
.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线
过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.![]()
(I)求y1y2的值;
(Ⅱ)求讧:|PM|="|" PN|
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xoy中,直线
的参数方程为
(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线
交于点A、B,若点P的坐标为
,求|PA|+|PB|。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
到两点
,
的距离之和为
,设点
的轨迹为曲线
.
(1)写出
的方程;
(2)设过点
的斜率为
(
)的直线
与曲线
交于不同的两点
,
,点
在
轴上,且
,求点
纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相切
,直线
与
轴交于点
,当
为何值时
的面积有最小值?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,直线
交抛物线于
两点,且
.![]()
(1)求抛物线
的方程;
(2)若点
是抛物线
上的动点,过
点的抛物线的切线与直线
交于点
,问在
轴上是否存在定点
,使得
?若存在,求出该定点,并求出
的面积的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,椭圆
左右焦点分别为
,上顶点为
,
为等边三角形.定义椭圆C上的点
的“伴随点”为
.
(1)求椭圆C的方程;
(2)求
的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
及点
,直线
斜率为1且不过点
,与抛物线交于点A,B,
(1) 求直线
在
轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,两焦点分别为
,点
是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点
在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com