【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000
公寓楼(每层的建筑面积相同).已知士地的征用费为
,土地的征用面积为第一层的
倍,经工程技术人员核算,第一层建筑费用为
,以后每增高一层,其建筑费用就增加
,设这幢公寓楼高层数为n,总费用为
万元.(总费用为建筑费用和征地费用之和)
(1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?
(2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
为曲线
上的动点,点
在射线
上,且满足
.
(Ⅰ)求点
的轨迹
的直角坐标方程;
(Ⅱ)设
与
轴交于点
,过点
且倾斜角为
的直线
与
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面选项中错误的有( )
A.命题“若
,则
”的否命题为:“若
,则
”
B.“
”是“
”的充分不必要条件
C.命题“
,使得
”的否定是“
,均有
”
D.命题“若
,则
”的逆否命题为真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,坐标原点为
,点
,
、
两点分别在
轴和
轴上运动,并且满足
,
,动点
的轨迹为曲线
.
(1)求动点
的轨迹方程;
(2)作曲线
的任意一条切线(不含
轴)
,直线
与切线
相交于
点,直线
与切线
、
轴分别相交于
点与
点,试探究
的值是否为定值,若为定值请求出该定值;若不为定值请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在边长为8的正方形ABCD中,M是BC的中点,N是AD边上的一点,且DN=3NA,若对于常数m,在正方形ABCD的边上恰有6个不同的点P,使
,则实数m的取值范围是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
分别在
、
处取得极小值、极大值.
平面上点
、
的坐标分别为
、
,该平面上动点
满足
,点
是点
关于直线
的对称点.
(Ⅰ)求点
、
的坐标;
(Ⅱ)求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的方程为
,集合
,若对于任意的
,都存在
,使得
成立,则称曲线
为
曲线.下列方程所表示的曲线中,是
曲线的有__________(写出所有
曲线的序号)
①
;②
;③
;④![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com