【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图). ![]()
(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?
【答案】
(1)解:f(x)=k1x,g(x)=
,
f(1)=
=k1,g(1)=k2=
,
∴f(x)=
x(x≥0),g(x)=
(x≥0)
(2)解:设:投资债券类产品x万元,则股票类投资为20﹣x万元.
y=f(x)+g(20﹣x)=
(0≤x≤20)
令t=
,则y=
=﹣
.
所以当t=2,即x=16万元时,收益最大,ymax=3万元
【解析】(1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设设投资债券类产品x万元,则股票类投资为20﹣x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若
是函数
的极值点,1为函数
的一个零点,求函数
在
上的最小值.
(2)当
时,函数
与
轴在
内有两个不同的交点,求
的取值范围.(其中
是自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有两个独立的转盘(
)、(
).两个图中三个扇形区域的圆心角分别为
、
、
.用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不会动,当指针恰好落在分界线时,则这次结果无效,重新开始),记转盘(
)指针所对的数为
,转盘(
)指针所对的数为
,(
、
),求下列概率:
![]()
(1)
;
(2)
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次运动会中甲、乙两名射击运动员决赛中各射击十次的成绩(环)如下:
![]()
(1)用茎叶图表示甲、乙两个人的成绩;
(2)根据茎叶图分析甲、乙两人的成绩;
(3)计算两个样本的平均数
和标准差
,并根据计算结果估计哪位运动员的成绩比较稳定.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所发现,一种作物的年收获量
(单位:
)与它“相近”作物的株数
具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过
),并分别记录了相近作物的株数为
时,该作物的年收获量的相关数据如下:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
(1)求该作物的年收获量
关于它“相近”作物的株数
的线性回归方程;
(2)农科所在如图所示的直角梯形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,图中
每个小正方形的边长均为
,若从直角梯形地块的边界和内部各随机选取一株该作物,求这两株作物 “相
近”且年产量仅相差
的概率.
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估
计分别为,
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4
4:坐标系与参数方程
在直角坐标系
中,已知直线l1:
(
,
),抛物线C:
(t为参数).以原点
为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l1 和抛物线C的极坐标方程;
(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com