精英家教网 > 高中数学 > 题目详情
精英家教网设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.
分析:(1)在△PF1F2中,利用余弦定理得出d1-d2是一个常数,从而动点P的轨迹C是以F1,F2为焦点的双曲线,最后求出双曲线的方程即可;
(2)在△AF1B中,设|AF1|=d1,|AF2|=d2,|BF1|=d3,|BF2|=d4.对于存在性问题,可先假设存在,即假设△AF1B为等腰直角三角形,再利用方程组,求出λ的值,若出现矛盾,则说明假设不成立,即不存在;否则存在.
解答:解:(1)在△PF1F2中,
|F1F2|=24=d12+d22-2d1d2cos2θ=(d1-d22+4d1d2sin2θ
(d1-d22=4-4λ
|d1-d2|=2
1-λ
(小于2的常数)
故动点P的轨迹C是以F1,F2为焦点,实轴长2a=2
1-λ
的双曲线.
方程为
x2
1-λ
-
y2
λ
=1

(2)在△AF1B中,设|AF1|=d1,|AF2|=d2,|BF1|=d3,|BF2|=d4
假设△AF1B为等腰直角三角形,则
d1-d2=2a①
d3-d4=2a②
d3=d4+d2
d1=
2
d3
d3d4sin2
π
4
=λ⑤

由②与③得d2=2a,
d1=4a
d3=2
2
a
d4=d3-2a=2(
2
-1)a

由⑤得d3d4=2λ,4
2
(
2
-1)a2=2λ
(8-4
2
)(1-λ)=2λ
λ=
12-2
2
17
∈(0,1)

故存在λ=
12-2
2
17
满足题设条件.
点评:本小题主要考查直线与圆锥曲线的综合问题、直线的方程、双曲线方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源:海南省嘉积中学2009-2010学年高二上学期期末考试数学试卷(理) 题型:044

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2,且2d1d2sin2=1.

(1)求证:

(2)求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学模拟试卷3(理科)(解析版) 题型:解答题

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年江西省高考数学试卷(文科)(解析版) 题型:解答题

设动点P到点F1(-1,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图,过点F2的直线与双曲线C的右支交于A,B两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案