精英家教网 > 高中数学 > 题目详情

把正方形以边所在直线为轴旋转到正方形,其中分别为的中点.

(1)求证:∥平面

(2)求证:平面

(3)求二面角的大小.

 

【答案】

(1)、(2)见解析;(3).

【解析】本试题主要是考查了空间立体几何中,线面平行的判定和线面垂直的判定以及运用空间向量法,或者几何法求解二面角的综合试题。熟练掌握线面平行和垂直度判定定理和性质定理,是解决该试题的关键。另外求解二面角的思路一般可以借助于三垂线定理来完成。

解:(1)设的中点为,连接

的中点∴          ……………(2分)

的中点∴,∴

是平行四边形,∴     

平面,平面,∴∥平面    ……………(4分)

(2)  ∵ 为等腰直角三角形, ,且的中点 

 ∴  ∵平面平面  ∴ 平面 

                                          ………………(6分)

,则在中,

  ∴ 

 ∴ 是直角三角形,∴

   ∴平面…(8分)

(3)分别以轴建立空间直角坐标系如图,

,则设,………(9分)

平面,∴ 面的法向量为= ……………(10分)

设平面的法向量为,∵     

 , ∴, 

不妨设,可得                         ………………(11分)

,∴ =

∵ 二面角是锐角,∴ 二面角的大小..........(12分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=-x2+2(0≤x≤
2
)的图象,且点M到边OA距离为t(
2
3
≤t≤
4
3
)

(1)当t=
2
3
时,求直路l所在的直线方程;
(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=-
1
2
x2+2(0≤x≤2
的图象,且点M到边OA距离为t(0<t<2).
(Ⅰ)当t=
1
2
时,求直路l所在的直线方程;
(Ⅱ)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•平遥县模拟)把正方形AA1B1B以边AA1所在直线为轴旋转900到正方形AA1C1C,其中D,E,F分别为B1A,C1C,BC的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1F⊥平面AEF;
(3)求二面角A-EB1-F的大小.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三3月月考数学试卷(解析版) 题型:解答题

(本小题满分15分)

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;

(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

 

查看答案和解析>>

同步练习册答案