精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数y=f(x)满足一下三个条件:
①对于任意的x∈R,都有f(x+4)=f(x);
②对于任意的x1,x2∈R,且0≤x1≤x2≤2,都有f(x1)<f(x2);
③函数的图象关于x=2对称;
则下列结论中正确的是( )
A.f(4.5)<f(7)<f(6.5)
B.f(7)<f(4.5)<f(6.5)
C.f(7)<f(6.5)<f(4.5)
D.f(4.5)<f(6.5)<f(7)
【答案】分析:利用函数满足的三个条件,先将f(4.5),f(7),f(6.5)转化为在区间[0,2]上的函数值,再比较大小即可.
解答:解:由①③两个条件得:f(4.5)=f(0.5);f(7)=f(3)=f(1);f(6.5)=f(2.5)=f(1.5),
根据条件②,0≤x1<x2≤2时,都有f(x1)<f(x2);
∴f(0.5)<f(1)<f(1.5),
∴f(4.5)<f(7)<f(6.5).
故选A.
点评:本题考查函数的单调性、周期性及对称性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案