精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形中,在线段上,是线段的中点,沿把平面折起到平面的位置,使平面,则下列命题正确的编号为______.

①二面角的余弦值为

②设折起后几何体的棱的中点,则平面

④四棱锥的内切球的表面积为.

【答案】②③④

【解析】

先由题意求得四棱锥的位置关系进而得到棱长的值,以此判断各个命题的真假.

由题意如图:使平面时,则

所以没有折叠前,即四边形是矩形,

平面,面

为二面角的平面角,

,所以①不正确,

的中点,连接

所以

四边形为平行四边形,

,而

.所以②正确,

的距离等于

所以③正确;

设四棱锥的内切球半径为,四棱锥被内切球的球心分成5个小棱锥,之和等于大棱锥的体积,

,所以内切球的表面积为

所以④正确,

故答案为:②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),将曲线上所有点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的极坐标方程及直线的直角坐标方程;

(2)设点为曲线上的任意一点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线经过椭圆的左焦点.

(1)求椭圆的标准方程;

(2)若直线轴交于点是椭圆上的两个动点,且它们在轴的两侧,的平分线在轴上,|,则直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线上一点,的焦点.

(1)若上的两点,证明:依次成等比数列.

(2)过作两条互相垂直的直线与的另一个交点分别交于(的上方),求向量轴正方向上的投影的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为________.

查看答案和解析>>

同步练习册答案