精英家教网 > 高中数学 > 题目详情
20、如图,在正方体ABCD-A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点.
(1)求证:面MNP∥面A1C1B;
(2)求证:MO⊥面A1C1
分析:(1)利用MN为△DD1C的中位线,可得MN∥D1C,再由正方形的性质可得D1C∥A1B,可证MN∥A1B.
 同理证MP∥C1B,从而证得面MNP∥面A1C1B.
(2)连接C1M和A1M,利用勾股定理可得C1M=A1M,故△A1C1M是等腰三角形,故有A1C1⊥MO.
解答:证明:(1)连接D1C,MN为△DD1C的中位线,∴MN∥D1C.又∵D1C∥A1B,
∴MN∥A1B.同理MP∥C1B.
而MN与MP相交,MN,MP?面MNP,A1B,
A1B?面A1C1B.∴面MNP∥面A1C1B.
(2)证明:连接C1M和A1M,
设正方体的边长为a,
∵正方体ABCD-A1B1C1D1,∴C1M=A1M,
又∵O为A1C1的中点,
∴A1C1⊥MO.
点评:本题考查证明面面平行、线线垂直的方法,面面平行 的判定定理应用,注意利用三角形的中位线的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案