精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,
(Ⅰ)求证AB⊥BC;
(Ⅱ)如果AB=BC=2,求侧面PBC与侧面PAC所成二面角的大小。
(Ⅰ)证明:取AC中点O,连结PO、BO,
∵PA=PC,∴PO⊥AC,
又∵侧面PAC⊥底面ABC,
∴PO⊥底面ABC,
又PA=PB=PC,
∴AO=BO=CO,
∴△ABC为直角三角形,
∴AB⊥BC。
(Ⅱ)解:作OD⊥PC于D,连结BD,
∵AB=BC=2,AB⊥BC,AO=CO,
∴BO⊥AC,侧面PAC⊥底面ABC,
∴BO⊥侧面PAC,∴BD⊥PC,
∴∠BDO为侧面PBC与侧面PAC所成二面角的平面角,
∵AB=BC=2,AB⊥BC,AO=CO,
∴BO=CO=,PO=

∴tg∠BDO=
∴∠BDO=
即侧面PBC与侧面PAC所成二面角为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案