已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线
的焦点,且离心率等于
,直线
与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为
的垂心?若可以,求出直线
的方程;若不行,请说明理由.
(Ⅰ)
;(Ⅱ)
。
【解析】
试题分析:(Ⅰ)设椭圆C的方程:
,
由题意知
,![]()
![]()
∴ 椭圆C的方程为:
(Ⅱ)假设存在这样的直线
,使得
是
的垂心,直线BF的斜率为
,
从而直线
的斜率为
,设直线
的方程为
,
由![]()
,设![]()
则
,且
,
![]()
![]()
![]()
,解得
或
当
时点B为直线
与椭圆的一个交点,不合题意舍去;
当
时,直线
与椭圆相交两点,且满足题意;
综上可知直线
的方程为
时,椭圆C的右焦点F是可以为
的垂心
。
考点:本题考查椭圆的基本性质、椭圆方程的求法以及直线与圆锥曲线的综合问题。
点评:本题考查了椭圆方程的求法,以及存在性问题的做法,为圆锥曲线的常规题,应当掌握。考查了学生综合分析问题的能力,知识的迁移能力以及运算能力。解题时要认真审题,仔细分析。
科目:高中数学 来源:山东省济宁市2012届高二下学期期末考试理科数学 题型:解答题
(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原
点,左焦![]()
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
查看答案和解析>>
科目:高中数学 来源:2012届山东省高二下学期期末考试理科数学 题型:解答题
(本小题满分14分) 已知在平面直角坐标系xoy中的一个椭圆,它的中心在原
。
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com