精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,an+an-1=(
12
)n
(n∈N*,n≥2),令Tn=a1•2+a222+…+an2n,类比课本中推导等比数列前n项和公式的方法,可求得3Tn-an2n+1=
2n
2n
分析:先对Tn=a1•2+a2•22+…+an•2n 两边同乘以2,再相加,求出其和的表达式,整理即可求出3Tn-an•2n+1的表达式.
解答:解:由Tn=a1•2+a2•22+…+an•2n ①
得2•Tn=a1•22+a2•23+…+an•2n+1 ②
①+②得:3Tn=2a1+22(a1+a2)+23•(a2+a3)+…+2n•(an-1+an)+an•2n+1 
=2a1+22×
1
2
+23(
1
2
)
2
+…+2n(
1
2
)
n+1
+an•2n+1
=2+2+2+…+2+2n+1•an
=2n+2n+1•an
所以3Tn-an•2n+1=2n.
故答案为:2n.
点评:本题主要考查了数列的求和,以及类比推理,是一道比较新颖的好题目,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案