定义:若数列
对任意
,满足
(
为常数),称数列
为等差比数列.
(1)若数列
前
项和
满足
,求
的通项公式,并判断该数列是否为等差比数列;
(2)若数列
为等差数列,试判断
是否一定为等差比数列,并说明理由;
(3)若数列
为等差比数列,定义中常数
,数列
的前
项和为
, 求证:
.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)在数列
中,
,并且对于任意n∈N*,都有
.
(1)证明数列
为等差数列,并求
的通项公式;
(2)设数列
的前n项和为
,求使得
的最小正整数
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列
的前
项和为
且
.
(1)求证数列
是等比数列,并求其通项公式
;
(2)已知集合
问是否存在实数
,使得对于任意的
都有
? 若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com