【题目】已知函数f(x)=|x﹣a|﹣
+a,x∈[1,6],a∈R.
(1)若a=1,试判断并证明函数f(x)的单调性;
(2)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a).
【答案】
(1)
解:∵a=1,x∈∈[1,6],
∴f(x)=|x﹣1|﹣
+1=x﹣
,
∴f′(x)=1+
>0,
∴f(x)是增函数;
(2)
解:因为1<a<6,所以f(x)=
,
①当1<a≤3时,f(x)在[1,a]上是增函数,在[a,6]上也是增函数,
所以当x=6时,f(x)取得最大值为
.
②当3<a<6时,f(x)在[1,3]上是增函数,在[3,a]上是减函数,在[a,6]上是增函数,
而f(3)=2a﹣6,f(6)=
,
当3<a≤
时,2a﹣6≤
,当x=6时,f(x)取得最大值为
.
当
≤a<6时,2a﹣6>
,当x=3时,f(x)取得最大值为2a﹣6.
综上得,M(a)= ![]()
【解析】(1)可求得f(x)=x﹣
,利用f′(x)>0即可判断其单调性;(2)由于1<a<6,可将f(x)化为f(x)=
,分1<a≤3与3<a<6讨论函数的单调性,从而求得函数f(x)的最大值的表达式M(a).
【考点精析】通过灵活运用函数单调性的判断方法和函数的最值及其几何意义,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2ax+5(a>1).
(1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若f(x)在区间(﹣∞,2],上是减函数,且对任意的x1 , x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过
):
空气质量指数 |
|
|
|
|
|
|
空气质量等级 |
|
|
|
|
|
|
该社团将该校区在
年
天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
![]()
(Ⅰ)请估算
年(以
天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校
年
月
、
日将作为高考考场,若这两天中某天出现
级重度污染,需要净化空气费用
元,出现
级严重污染,需要净化空气费用
元,记这两天净化空气总费用为
元,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点
,焦点在
轴上,椭圆
的短轴端点和焦点所组成的四边形为正方形,且椭圆
上任意一点到两个焦点的距离之和为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
相交于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是( )
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com