精英家教网 > 高中数学 > 题目详情
已知函数
(1)求函数的定义域,并证明在定义域上是奇函数;
(2)对于x∈[2,6],恒成立,求实数m的取值范围;
(3)当n∈N*时,试比较f(2)+f(4)+f(6)+…+f(2n)与2n+2n2的大小关系。
解:(1)由解得x<-1或x>1,
∴函数的定义域为(-∞,-1)∪(1,+∞)
当x∈(-∞,-1)∪(1,+∞)时


在定义域上是奇函数。
(2)当x∈[2,6]时
恒成立

∵x∈[2,6],
∴0<m<(x+1)(7-x)在x∈[2,6]成立
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈ [2,6],
由二次函数的性质可知x∈[2,3]时函数单调递增,x∈[3,6]时函数单调递减,
x∈[2,6]时,g(x)min=g(6)=7,
∴0<m<7。
(3)f(2)+f(4)+f(6)+…+f(2n)==ln(2n+1)
构造函数h(x)=ln(1+x)-(x>0)

当x>0时,h'(x)<0
在(0,+∞)单调递减,
∴h(x)<h(0)=0;
当x=2n(n∈N*)时,ln(1+2n)-(2n+2n2)<0,
∴ln(1+2n)<2n+2n2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案