精英家教网 > 高中数学 > 题目详情
(2012•河北模拟)已知岛A南偏西38°方向,距岛3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?(参考数据:sin38°=
5
3
14
sin22°=
3
3
14
.)
分析:在△ABC中,由余弦定理可得BC,从而可求速度,再利用正弦定理,可求∠ABC=38°,进而可求我巡逻艇的航行方向.
解答:解:由题意AC射线即为走私船航行路线.
假设我巡逻艇恰在C处截获走私船,我巡逻艇的速度为每小时v海里,则BC=0.5v,AC=5.
依题意,∠BAC=180°-38°-22°=120°,

由余弦定理:BC2=AB2+AC2-2AB•ACcos120°,∴BC=7
∵BC=0.5v,∴v=14海里/h,
又由正弦定理,sin∠ABC=
AC•sin∠BAC
BC
=
5
3
14
,∴∠ABC=38°,
∵∠BAD=38°,∴BC∥AD
即我巡逻艇须用每小时14海里的速度向正北方向航行才能恰用0.5小时在C处截住该走私船
点评:本题以实际问题为素材,考查利用正弦、余弦定理解决三角形问题,解题的关键是构建三角形的模型,合理运用正弦、余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河北模拟)已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)+g(x)有两个不同的极值点x1,x2(x1<x2)且x2-x1>ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)设全集U=R,A={x|2(x-1)2<2},B={x|log
1
2
(x2+x+1)>-log2(x2+2)
},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图是一个程序框图,该程序框图输出的结果是
4
5
,则判断框内应该填入的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于(  )

查看答案和解析>>

同步练习册答案