【题目】在平面直角坐标系
中,已知点
和直线
:
,设圆
的半径为1,圆心在直线
上.
(Ⅰ)若圆心
也在直线
上,过点
作圆
的切线.
(1)求圆
的方程;(2)求切线的方程;
(Ⅱ)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
【答案】(Ⅰ)(1)
.(2)
或
(Ⅱ)![]()
【解析】
(Ⅰ)(1)联立两直线可求出圆心
为
,写出圆的方程即可(2)设切线方程为
,利用点到直线的距离等于半径即可求出切线的斜率,写出切线方程.
(Ⅱ)设圆心
为
, 则圆
的方程为:
,设
为
,根据
,可得圆D方程:
,利用两圆有公共点知
,即可求解.
(Ⅰ)(1)由
得圆心
为
,
∵圆
的半径为1,
∴圆
的方程为:
.
(2)由圆
方程可知过
的切线斜率一定存在,
设所求圆
的切线方程为
,即
,
∴
,解之得:
或
,
∴所求圆
的切线方程为:
或
.
即
或
.
(Ⅱ)∵圆
的圆心在直线:
上,
设圆心
为
,
则圆
的方程为:
,
又∵
,
∴设
为
,则![]()
整理得:
,设为圆
,
∴点
应该既在圆
上又在圆
上
∴圆
和圆
有公共点,∴
,
即:
,
解之得:![]()
即
的取值范围为:
.
科目:高中数学 来源: 题型:
【题目】如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l. ![]()
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医药公司针对某种疾病开发了一种新型药物,患者单次服用制定规格的该药物后,其体内的药物浓度
随时间
的变化情况(如图所示):当
时,
与
的函数关系式为
(
为常数);当
时,
与
的函数关系式为
(
为常数).服药
后,患者体内的药物浓度为
,这种药物在患者体内的药物浓度不低于最低有效浓度,才有疗效;而超过最低中毒浓度,患者就会有危险.
(1)首次服药后,药物有疗效的时间是多长?
(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?
(参考数据:
,
)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的方程为
,
点的坐标为
.
(1)求过点
且与圆
相切的直线方程;
(2)过点
任作一条直线
与圆
交于不同两点
,
,且圆
交
轴正半轴于点
,求证:直线
与
的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从
岁的人群中随机抽取了
人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对
人对这“开放小区”认同情况进行统计得到下表:
![]()
(Ⅰ)完成所给的频率分布直方图,并求
的值;
(Ⅱ)如果从
两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在
内的概率 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(b∈R).若存在x∈[
,2],使得f(x)+xf′(x)>0,则实数 b的取值范围是( )
A.(﹣∞,
)
B.(﹣∞,
)
C.(﹣∞,3)
D.(﹣∞,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com