(本小题满分16分)
已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数![]()
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数。请解答以下问题:
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围.
(1)函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数;
(2) 见解析;(3)
.
【解析】
试题分析:(1)因为函数
在区间
上单调递减,在
上单调递增,不符合题意,不成立。
(2)利用高次函数来分析,利用单调性的定义分析和证明。
(3)易知
是
上的增函数,符合条件①;设函数符合条件②的区间
为
,利用对应相等得到结论。
解:(1)函数
在区间
上单调递减,在
上单调递增;---2分
所以,函数在定义域上不是单调递增或单调递减函数,从而该函数不是闭函数---4分
(2) 先证
符合条件①:对于任意![]()
![]()
且
,有
,
,故
是
上的减函数.
又因为
在
上的值域是
。 ---------8分
(3)易知
是
上的增函数,符合条件①;设函数符合条件②的区间
为
,则
;故
是
的两个不等根,即方程组为:
有两个不等非负实根;
- -- --- ------11分
设
为方程
的二根,则
,
解得:
的取值范围
.
--- --- ---16分
考点:本题主要是考查新定义的理解和运用,确定是否为闭函数。
点评:解决该试题的关键是理解概念,运用函数的单调性和函数的某个区间,是否满足定义域和值域相同得到结论。
科目:高中数学 来源: 题型:
(2010江苏卷)18、(本小题满分16分)
在平面直角坐标系
中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F。设过点T(
)的直线TA、TB与椭圆分别交于点M
、
,其中m>0,
。
(1)设动点P满足
,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设
,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
查看答案和解析>>
科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题
(本小题满分16分)
函数
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,对任意
时,
恒成立,求实数
的范围;
(Ⅲ)如果
,当“
对任意
恒成立”与“
在
内必有解”同时成立时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题
(本小题满分16分) 本题请注意换算单位
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;
(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)设命题
:方程
无实数根;
命题
:函数
的值域是
.如果命题
为真命题,
为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com