精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.
【答案】分析:(Ⅰ)设椭圆的半焦距为c,由题意知,由此能求出椭圆的标准方程.
(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),假设使成立的直线l存在,当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且,由,知x1x2+y1y2=0.将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2-8)=0,由韦达定理能够导出k2=-1,即此时直线l不存在;当l垂直于x轴时,满足的直线l的方程为x=1或x=-1,由此能够导出此时直线l不存在.所以使成立的直线l不存在.
解答:解:(Ⅰ)设椭圆的半焦距为c,
由题意知
所以,又a2=b2+c2,因此b=2
故椭圆的标准方程为(6分)
(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),
假设使成立的直线l存在,
(ⅰ)当l不垂直于x轴时,设l的方程为y=kx+m,
由l与n垂直相交于P点且,即m2=k2+1


==1+0+0-1=0,
即x1x2+y1y2=0
将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2-8)=0
由求根公式可得
0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2
因此(1+k2)(2m2-8)-4k2m2+m2(1+2k2)=0
将m2=k2+1代入上式并化简得k2=-1,
即此时直线l不存在;(10分)
(ⅱ)当l垂直于x轴时,满足的直线l的方程为x=1或x=-1,
当x=1时,A,B,P的坐标分别为
,∴
当x=-1时,同理可得,矛盾,即此时直线l不存在
综上可知,使成立的直线l不存在.(14分)
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意计算能力的培养,提高解题能力和解题技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1(a>b>0)与双曲线=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中数学 来源:2014届广东省、阳东一中高二上联考文数试卷(解析版) 题型:解答题

(本题满分14分)

如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.

   (1)求椭圆C的标准方程;

   (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年河北省邯郸市高二上学期期末考试数学理卷 题型:解答题

(本小题满分分)

(普通高中)已知椭圆(a>b>0)的离心率,焦距是函数的零点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,,求k的值.

 

查看答案和解析>>

同步练习册答案