(1)试求函数f(x)的最大值和最小值;
(2)试比较f(
n)与
n+2的大小(n∈N);
(3)某人发现:当x=
n(n∈N)时,有f(x)<2x+2.由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你判断此猜想是否正确,并说明理由.
解:(1)设0≤x1<x2≤1,则必存在实数t∈(0,1),使得x2=x1+t,
由条件③得,f(x2)=f(x1+t)≥f(x1)+f(t)-2,
∴f(x2)-f(x1)≥f(t)-2,由条件②得,f(x2)-f(x1)≥0,故当0≤x≤1时,有f(0)≤f(x)≤f(1).
又在条件③中,令x1=0,x2=1,得f(1)≥f(1)+f(0)-2,即f(0)≤2,∴f(0)=2,故函数f(x)的最大值为3,最小值为2.
(2)在条件③中,令x1=x2=
,得f(
)≥2f(
n)-2,即f(
)-2≤
[f(
)-2],
故当n∈N*时,有f(
)-2≤
[f(
)-2]≤
[f(
)-2]≤…≤
[f(
)-2]=
,
即f(
)≤
+2.
又f(
)=f(1)=3≤2+
,
所以对一切n∈N,都有f(
)≤
+2.
(3)对一切x∈(0,1),都有f(x)<2x+2.
对任意满足x∈(0,1),总存在n(n∈N),使得
<x≤
,
根据(1)(2)结论,可知:f(x)≤f(
)≤
+2,且2x+2>2×
+2=
+2,
故有f(x)<2x+2.综上所述,对任意x∈(0,1),f(x)<2x+2恒成立.
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| a-3 |
| 2 |
| x | 2 1 |
| x | 2 2 |
| x | 3 1 |
| x | 3 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| 1+x |
| 1 |
| 10 |
| 1 |
| 9 |
| 1 |
| 2 |
| 19 |
| 2 |
| 19 |
| 2 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| x |
| ||
1+
|
| x |
| 1+x |
| 1 |
| 1+x |
| x |
| 1+x |
| 1+x |
| 1+x |
| 1 | ||
2x+
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 1-x |
| 1 |
| 2 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| lim |
| n→∞ |
| 4Sn-9Sn |
| 4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x+1-a |
| a-x |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 1-x |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| sinα | ||
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com