精英家教网 > 高中数学 > 题目详情
若A+B=
4
,且A,B≠kπ+
π
2
(k∈Z),则(1+tanA)(1+tanB)=
2
2
分析:由条件利用两角和的正切公式可得 tan(A+B)=
tanA +tanB
1-tanA•tanB
=1,即tanA+tanB=1-tanA•tanB,代入要求的式子化简可得结果.
解答:解:∵A+B=
5
4
π,
∴tan(A+B)=
tanA +tanB
1-tanA•tanB
=1,
∴tanA+tanB=1-tanA•tanB.
则(1+tanA)(1+tanB)=1+tanA+tanB+tanA•tanB
=1+(1-tanA•tanB )+tanA•tanB=2,
故答案为:2.
点评:本题主要考查了两角和与差的正切函数,解答关键是要注意对两角和与差公式的变形利用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a

(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2

(5)
a
b
?存在唯一的实数λ∈R,使得
b
a

(6)
e
为单位向量,且
a
e
,则
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3

(8)
a
b
共线,
b
c
共线,则
a
c
共线;
(9)若
a
b
=
b
c
b
0
,则
a
=
c

(10)若
OA
=
a
OB
=
b
a
b
不共线,则∠AOB平分线上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
确定./
其中正确命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列6个命题中
(1)第一象限角是锐角
(2)角a终边经过点(a,a)时,sina+cosa=
2

(3)若y=
1
2
sin(ωx)的最小正周期为4π,则ω=
1
2

(4)若cos(α+β)=-1,则sin(2α+β)+sinβ=0
(5)若
a
b
,则有且只有一个实数λ,使
b
a

(6)若定义在R上函数f(x)满足f(x+1)=-f(x),则y=f(x)是周期函数
请写出正确命题的序号
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列6个命题中
(1)第一象限角是锐角
(2)角a终边经过点(a,a)时,sina+cosa=
2

(3)若y=
1
2
sin(ωx)的最小正周期为4π,则ω=
1
2

(4)若cos(α+β)=-1,则sin(2α+β)+sinβ=0
(5)若
a
b
,则有且只有一个实数λ,使
b
a

(6)若定义在R上函数f(x)满足f(x+1)=-f(x),则y=f(x)是周期函数
请写出正确命题的序号______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若A+B=
4
,且A,B≠kπ+
π
2
(k∈Z),则(1+tanA)(1+tanB)=______.

查看答案和解析>>

同步练习册答案