【题目】【2017福建三明5月质检】如图,在四棱锥
中,侧面
底面
,底面
是平行四边形,
,
,
,
为
的中点,点
在线段
上.
![]()
(Ⅰ)求证:
;
(Ⅱ)试确定点
的位置,使得直线
与平面
所成的角和直线
与平面
所成的角相等.
科目:高中数学 来源: 题型:
【题目】我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中双曲线的离心率是( )
A.![]()
B.![]()
C.![]()
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别是a、b、c,且满足csinA﹣
acosC=0.
(1)求角C的大小;
(2)若c=2,求△ABC的面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017福建4月质检】如图,三棱柱
中,
,
,
分别为棱
的中点.
![]()
(1)在平面
内过点
作
平面
交
于点
,并写出作图步骤,但不要求证明.
(2)若侧面
侧面
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AC⊥BC,AB⊥BB1 , AC=BC=BB1 , D为AB的中点,且CD⊥DA1 . ![]()
(1)求证:BC1∥平面DCA1;
(2)求BC1与平面ABB1A1所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是各项都为正数的等比数列,其前n项和为Sn , 且S2=3,S4=15.
(1)求数列{an}的通项公式;
(2)若数列{bn}是等差数列,且b3=a3 , b5=a5 , 试求数列{bn}的前n项和Mn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com