精英家教网 > 高中数学 > 题目详情
设椭圆的左、右焦点分别为F1与F2,直线y=x-1过椭圆的一个焦点F2且与椭圆交于P、Q两点,若△F1PQ的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线C',直线l:y=kx+m与曲线C'相切且与椭圆C交于不同的两点A、B,若,且,求△OAB面积的取值范围.(O为坐标原点)
【答案】分析:(1)根据直线与x轴交点求得c,进而根据椭圆的定义求得|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,根据△F1PQ的周长求得a,则b可求得,进而求得椭圆的方程.
(2)根据题意可求得曲线C'的方程,整理得圆的方程,根据直线l与圆相切求得原点到直线的距离进而求得k和m的关系式,与椭圆方程联立设A(x1,y1),B(x2,y2)根据判别式求得k的范围,依据韦达定理表示出x1+x2和x1x2,进而根据直线方程表示出y1y2,进而根据m2=1+k2求得x1+x2和x1x2关于k的表达式,进而求得的表达式,根据λ的范围确定k的范围,根据弦长公式表示出|AB|,根据k的范围确定|AB|的范围,进而利用|AB|表示出△OAB面积求得△OAB面积的取值范围.
解答:解:(1)依题意y=x-1与x轴交于点F2(1,0)
即c=1.
又|PF1|+|PF2|=2a,|QF1|+|QF2|=2a
所以|PF1|+|PQ|+|QF1|=|PF1|+|PF2|+|QF2|+|QF1|=4a∴,∴b2=a2-c2=1
所以椭圆C的方程为
(2)依题意曲线C'的方程为
即圆x'2+y'2=1.
因为直线l:y=kx+m与曲线C'相切,
所以
即m2=k2+1.

得(1+2k2)x2+4kmx+2m2-2=0
设A(x1,y1),B(x2,y2
所以△>0,即k2>0,
所以k≠0.
所以
所以y1y2=(kx1+m)(kx2+m)=
又m2=1+k2
所以
所以

所以
所以

设u=k4+k2
因为,所以
上为递增函数,
所以
又O到AB的距离为1,
所以
即△OAB的面积的取值范围为
点评:本题主要考查了圆锥曲线的综合性问题,考查了直线与圆锥曲线的关系.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点、焦点在x轴上椭圆的离心率e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年四川卷理)设椭圆的左、右焦点分别是,离心率,右准线上的两动点,且

(Ⅰ)若,求的值;

(Ⅱ)当最小时,求证共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 已知椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线且与x轴垂直,动直线轴垂直,于点P,求线段PF1的垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

设椭圆的左、右焦点分别是F1、F2,离心率,右准线l上的两动点M、N,且
(Ⅰ)若,求a、b的值;
(Ⅱ)当最小时,求证共线。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:解答题

已知中心在坐标原点、焦点在x轴上椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

同步练习册答案