精英家教网 > 高中数学 > 题目详情


.已知平面内一动点到点F(1,0)的距离与点轴的距离的等等于1.
(I)求动点的轨迹的方程;
(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

解析:(I)设动点的坐标为,由题意为
化简得

所以动点P的轨迹C的方程为
(II)由题意知,直线的斜率存在且不为0,设为,则的方程为
,得
是上述方程的两个实根,于是

因为,所以的斜率为
则同理可得

当且仅当时,取最小值16.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内一动点P到F(1,0)的距离比点P到y轴的距离大1.
(1)求动点P的轨迹C的方程;
(2)过点F的直线交轨迹C于A,B两点,交直线x=-1于M点,且
MA
=λ1
AF
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内一动点P到定点F(2,0)的距离与点P到y轴的距离的差等于2.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1),B(x2,y2)(x1<x2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程.
(2)过点F作两条斜率存在且互相垂直的直线l1、l2,设l1与轨迹C交于A、B两点,l2与轨迹C交于D、E两点,求|FA|•|FB|+|FC|•|FD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•汕头二模)已知平面内一动点 P到定点F(0,
1
2
)
的距离等于它到定直线y=-
1
2
的距离,又已知点 O(0,0),M(0,1).
(1)求动点 P的轨迹C的方程;
(2)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,以 M P为直径作圆,求该圆截直线y=
1
2
所得的弦长;
(3)当点 P(x0,y0)(x0≠0)在(1)中的轨迹C上运动时,过点 P作x轴的垂线交x轴于点 A,过点 P作(1)中的轨迹C的切线l交x轴于点 B,问:是否总有 P B平分∠A PF?如果有,请给予证明;如果没有,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程;
(2)是否存在过点N(4,2)的直线m,使得直线m被曲线C所截得的弦AB恰好被点N平分?如果存在,求出直线m的方程;不存在,请说明理由.

查看答案和解析>>

同步练习册答案