精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,AB∥DC,DC=2AB,AP=AD,PB⊥AC,BD⊥AC,E为PD的中点.求证:
(1)AE∥平面PBC;
(2)PD⊥平面ACE.
分析:(1)要证明线面平行,需要构造线面平行的判定定理的条件--在面PBC内找到与AE平行的直线,取PC的中点F利用题目中的平行关系,可证得AE∥BF,即得AE∥BF.
(2)由PB⊥AC,BD⊥AC可得AC⊥平面PBD,利用线面垂直的定义得AC⊥PD,然后由AP=AD,E为PD的中点得到PD⊥AE,由线面垂直的判定定理可得PD⊥平面ACE.
解答:精英家教网证明:(1)取PC中点F,连接EF,BF,
∵E为PD中点,
∴EF∥DC且EF=
1
2
DC

∵AB∥DC且AB=
1
2
DC

∴EF∥AB且EF=AB.
∴四边形ABFE为平行四边形.
∴AE∥BF.
∵AE?平面PBC,BF?平面PBC,
∴AE∥平面PBC.
(2)∵PB⊥AC,BD⊥AC,PB∩BD=B,
∴AC⊥平面PBD.
∵PD?平面PBD,
∴AC⊥PD.
∵AP=AD,E为PD的中点,
∴PD⊥AE.
∵AE∩AC=A,
∴PD⊥平面ACE.
点评:本题考查了线面平行和线面垂直的判断,考查数形结合、化归与转化的数学思想方法,是个中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案