(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知函数
.
(1) 试说明函数
的图像是由函数
的图像经过怎样的变换得到的;
(2) (理科)若函数
,试判断函数
的奇偶性,并用反证法证明函数
的最小正周期是
;
(3) 求函数
的单调区间和值域.
解(1)∵![]()
,
∴
.
∴函数
的图像可由
的图像按如下方式变换得到:
①将函数
的图像向右平移
个单位,得到函数
的图像;
②将函数
的图像上所有点的横坐标缩短到原来的
倍(纵坐标不变),得到函数
的图像;
③将函数
的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数
的图像.
(2)(理科)由(1)知,
,
∴
.
又对任意
,有
,
∴函数
是偶函数.
∵
,
∴
是周期函数,
是它的一个周期.
现用反证法证明
是函数
的最小正周期。
反证法:假设
不是函数
的最小正周期,设
是
的最小正周期.
则
,即
.
令
,得
,两边平方后化简,得
,这与
(
)矛盾.因此,假设不成立.
所以,函数
的最小正周期是
.
(3)(理科)先求函数
在一个周期
内的单调区间和函数值的取值范围。
当
时,
,且
.
易知,此时函数
的单调增区间是
,单调减区间是
;
函数的取值范围是
.
因此,依据周期函数的性质,可知函数
的单调增区间是
;单调减区间是
;
函数
的值域是
.
【解析】横坐标先放缩,再平移也可.即将函数
的图像上所有点的横坐标缩短到原来的
倍(纵坐标不变),得到函数
,再将函数
的图像向右平移
个单位,得到函数
的图像,最后将函数
的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数
的图像.
科目:高中数学 来源: 题型:
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列
中,![]()
(1)求证数列
不是等比数列,并求该数列的通项公式;
(2)求数列
的前
项和
;
(3)设数列
的前
项和为
,若
对任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数
是定义域为R的奇函数.
(1)求k值;
(2)(文)当
时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式
恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com