(本小题满分13分)
设函数
对任意的实数
,都有
,且当
时,
。
(1)若
时,求
的解析式;
(2)对于函数
,试问:在它的图象上是否存在点
,使得函数在点
处的切线与
平行。若存在,那么这样的点
有几个;若不存在,说明理由。
(3)已知
,且
,记
,求证:
。
解:(1)
;(2)满足题意的点
有5个;(3)
.
【解析】本试题主要考查了函数的解析式的求解,以及过点的切线方程的问题,和不等式的证明 的综合运用。
(1)第一问中将所求的变量转化为已知的区间,利用已知的关系式求解得到解析式。
(2)在第一问的基础上进一步得到函数的一般式,然后利用导数的思想,只要判定导函数为零,方程有无解即可。
(3)在第二问的得到函数的单调性,以及函数的最大值,然后结合函数的最值得到不等式,再结合等比数列的求和的思想得到。
解:(1)∵![]()
设
,则
,∴
。…………………2分
(2)设
,则
,![]()
∴![]()
∴
,即为
………4分
∵![]()
![]()
![]()
∴问题转化为判断:关于
的方程
在
,
内是否解,即
在
,
内是否有解,……………………6分
令![]()
![]()
函数
的图象是开口向上的抛物线,其对称轴是直线
,
判别式
,
且
,
,
当
时,∵
,
∴方程
分别在区间
上各有一解,即存在5个满足题意的点![]()
②当
时,∵
,∴方程
在区间
上无解。
综上所述:满足题意的点
有5个。
…………………………9分
(3)由(2)可知:![]()
∴当
时,
,
在
上递增;
当
时,
,
在
上递减。
∴当
时,
,
又![]()
∴对任意的
,当
时,都有
,
∴![]()
。
∴
…………………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com