数列
的前
项和为
,且
是
和
的等差中项,等差数列
满足
(1)求数列
、
的通项公式
(2)设
=
,求数列
的前
项和
.
(1)
,
(2) ![]()
【解析】
试题分析:(1)由
与
的关系可得
及
,两式相减可得数列
的通项公式,在使用
与
的关系时要注意
与
的情况讨论;(2)
的通项公式是由一个等差数列与一个等比数列比值的形式,求其和时可用错位相减法.两式相减时要注意下式的最后一项出现负号,等比求和时要数清等比数列的项数,也可以使用
这个求和公式,它可以避免找数列的数项;最终结果化简依靠指数运算,要保证结果的成功率,可用
作为特殊值检验结果是否正确.
试题解析:(1)由题意知,
,故![]()
又
时,由
得
,即![]()
故
是以1为首项以2为公比的等比数列,
所以
.
因为
,所以
的公差为2,所以![]()
(2)由
=
,得
①
②
-②得
![]()
![]()
所以![]()
考点:1、
与
的关系;2、错位相减法求数列和.
科目:高中数学 来源:2013-2014学年河北衡水中学高三上学期期中考试理科数学试卷(解析版) 题型:解答题
数列
的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列
、
的通项公式;
(2)设
,数列
的前
项和为
,证明:
.
查看答案和解析>>
科目:高中数学 来源:2014届广东佛山南海普通高中高三8月质量检测文科数学试卷(解析版) 题型:解答题
数列
的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列
、
的通项公式;
(2)设
,数列
的前
项和为
,证明:
.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年重庆市高三上学期半期考试理科数学试卷(解析版) 题型:解答题
设数列
的前
项和为
,满足
,![]()
,且
,
,
成等差数列.
(1)求
,
的值;
(2)
是等比数列
(3)证明:对一切正整数
,有
.
查看答案和解析>>
科目:高中数学 来源:2010年吉林省高一下学期期中考试数学 题型:选择题
数列
的前
项和为
,且
,
.则数列
( )[来源:ZXXK]
A.是等差数列但不是等比数列 B.是等比数列但不是等差数列
C.既是等差数列又是等比数列 D.既不是等差数列又不是等比数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com