| x′ |
| 2 |
| y′ |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2012年人教A版高中数学必修二空间点、直线、平面之间的位置关系练习卷(二) 题型:解答题
如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,使A、B、C三点重合,构成三棱锥A— DEF .
![]()
(I)求平面ADE与底面DEF所成二面角的余弦值
(Ⅱ)设点M、N分别在AD、EF上,
(λ>O,λ为变量)
①当λ为何值时,MN为异面直线AD与EF的公垂线段? 请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β 的值
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(天津卷解析版) 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
查看答案和解析>>
科目:高中数学 来源:2013届浙江省第一学期高二年级期中理科数学试卷 题型:解答题
在平面直角坐标系中,已知矩形
的长为2,宽为1,
边分别在x轴、y轴的正半轴上,
点与坐标原点重合(如图4所示),将矩形折叠,使
点落在线段
上.
(Ⅰ)若折痕所在直线的斜率为
,试写出折痕所在直线的方程;
(Ⅱ)设折痕线段为EF,记
, 求
的解析式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com