ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx£¬ÇÒf¡ä£¨-1£©=0£®
£¨1£©ÊÔÓú¬aµÄ´úÊýʽ±íʾb£¬²¢Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Áîa=-1£¬É躯Êýf£¨x£©ÔÚx1£¬x2£¨x1£¼x2£©´¦È¡µÃ¼«Öµ£¬¼ÇµãM £¨x1£¬f£¨x1£©£©£¬N£¨x2£¬f£¨x2£©£©£¬P£¨m£¬f£¨m£©£©£¬x1£¼m£¼x2£¬Çë×Ðϸ¹Û²ìÇúÏßf£¨x£©ÔÚµãP´¦µÄÇÐÏßÓëÏß¶ÎMPµÄλÖñ仯Ç÷ÊÆ£¬²¢½âÊÍÒÔÏÂÎÊÌ⣺
£¨¢ñ£©Èô¶ÔÈÎÒâµÄt¡Ê£¨x1£¬x2£©£¬Ïß¶ÎMPÓëÇúÏßf£¨x£©¾ùÓÐÒìÓÚM£¬PµÄ¹«¹²µã£¬ÊÔÈ·¶¨tµÄ×îСֵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ò£©Èô´æÔÚµãQ£¨n£¬f£¨n£©£©£¬x¡Ün£¼m£¬Ê¹µÃÏß¶ÎPQÓëÇúÏßf£¨x£©ÓÐÒìÓÚP¡¢QµÄ¹«¹²µã£¬ÇëÖ±½Óд³ömµÄȡֵ·¶Î§£¨²»±Ø¸ø³öÇó½â¹ý³Ì£©£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓûÇ󣺡°f£¨x£©µÄµ¥µ÷Çø¼ä¡±£¬¶ÔÓÚÈý´Îº¯Êý¶øÑÔ£¬ÀûÓõ¼Êý½â¾ö£¬±¾Ì⻹µÃ¶Ô×Öĸa½øÐÐÌÖÂÛ£»
£¨2£©´æÔÚÐÔÎÊÌ⣬½áºÏ¹Û²ìf£¨x£©µÄͼÏ󣬰ïÖú·ÖÎöÎÊÌ⣮
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬µÃf¡ä£¨x£©=x2+2ax+b£¬
ÓÉf¡ä£¨-1£©=1-2a+b=0µÃb=2a-1
´Ó¶øf£¨x£©=x3+ax2+£¨2a-1£©x£¬
¹Êf¡ä£¨x£©=£¨x+1£©£¨x+2a-1£©
Áîf¡ä£¨x£©=0£¬µÃx=-1»òx=1-2a
¢Ùµ±a£¾1ʱ£¬1-2a£¼-1
µ±x±ä»¯Ê±£¬¸ù¾Ýf¡ä£¨x£©Óëf£¨x£©µÄ±ä»¯Çé¿öµÃ£¬
º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬1-2a£©ºÍ£¨-1£¬+¡Þ£©£¬µ¥µ÷¼õÇø¼äΪ£¨1-2a£¬-1£©
¢Úµ±a=1ʱ£¬1-2a=-1£¬´ËʱÓÐf¡ä£¨x£©¡Ý0ºã³ÉÁ¢£¬ÇÒ½öÔÚx=-1´¦f¡ä£¨x£©=0£¬¹Êº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪR¡¢
¢Ûµ±a£¼1ʱ£¬1-2a£¾-1£¬Í¬Àí¿ÉµÃ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬-1£©ºÍ£¨1-2a£¬+¡Þ£©£¬
µ¥µ÷¼õÇø¼äΪ£¨-1£¬1-2a£©
×ÛÉÏ£ºµ±a£¾1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬1-2a£©ºÍ£¨-1£¬+¡Þ£©£¬µ¥µ÷¼õÇø¼äΪ£¨1-2a£¬-1£©£»
µ±a=1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪR£»
µ±a£¼1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬-1£©ºÍ£¨1-2a£¬+¡Þ£©£¬µ¥µ÷¼õÇø¼äΪ£¨-1£¬1-2a£©
£¨2£©£¨¢ñ£©ÓÉa=-1µÃf£¨x£©=x3-x2-3x
Áîf¡ä£¨x£©=x2-2x-3=0µÃx1=-1£¬x2=3
ÓÉ£¨1£©µÃf£¨x£©ÔöÇø¼äΪ£¨-¡Þ£¬-1£©ºÍ£¨3£¬+¡Þ£©£¬µ¥µ÷¼õÇø¼äΪ£¨-1£¬3£©£¬
ËùÒÔº¯Êýf£¨x£©ÔÚ´¦x1=-1£¬x2=3´¦È¡µÃ¼«Öµ£¬¹ÊM£¨-1£¬£©£¬N£¨3£¬-9£©
¹Û²ìf£¨x£©µÄͼÏó£¬ÓÐÈçÏÂÏÖÏó£º

¢Ùµ±m´Ó-1£¨²»º¬-1£©±ä»¯µ½3ʱ£¬Ïß¶ÎMPµÄбÂÊÓëÇúÏßf£¨x£©ÔÚµãP´¦ÇÐÏßµÄбÂÊf£¨x£©Ö®²îKmp-f¡ä£¨m£©µÄÖµÓÉÕýÁ¬Ðø±äΪ¸º¡¢
¢ÚÏß¶ÎMPÓëÇúÏßÊÇ·ñÓÐÒìÓÚH£¬PµÄ¹«¹²µãÓëKmp-f¡ä£¨m£©µÄmÕý¸ºÓÐ×ÅÃÜÇеĹØÁª£»
¢ÛKmp-f¡ä£¨m£©=0¶ÔÓ¦µÄλÖÿÉÄÜÊÇÁÙ½çµã£¬¹ÊÍÆ²â£ºÂú×ãKmp-f¡ä£¨m£©µÄm¾ÍÊÇËùÇóµÄt×îСֵ£¬ÏÂÃæ¸ø³öÖ¤Ã÷²¢È·¶¨µÄt×îСֵ¡¢ÇúÏßf£¨x£©ÔÚµãP£¨m£¬f£¨m£©£©´¦µÄÇÐÏßбÂÊf¡ä£¨m£©=m2-2m-3£»
Ïß¶ÎMPµÄбÂÊKmp=£¬
µ±Kmp-f¡ä£¨m£©=0ʱ£¬½âµÃm=-1»òm=2£¬
Ö±ÏßMPµÄ·½³ÌΪy=£¨x+£©£¬
Áîg£¨x£©=f£¨x£©-£¨x+£©£¬
µ±m=2ʱ£¬g¡ä£¨x£©=x2-2xÔÚ£¨-1£¬2£©ÉÏÖ»ÓÐÒ»¸öÁãµãx=0£¬¿ÉÅжÏf£¨x£©º¯ÊýÔÚ£¨-1£¬0£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨0£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÓÖg£¨-1£©=g£¨2£©=0£¬ËùÒÔg£¨x£©ÔÚ£¨-1£¬2£©ÉÏûÓÐÁãµã£¬¼´Ïß¶ÎMPÓëÇúÏßf£¨x£©Ã»ÓÐÒìÓÚM£¬PµÄ¹«¹²µã¡¢
µ±m¡Ê£¨2£¬3]ʱ£¬g£¨0£©=-£¾0£¬
g£¨2£©=-£¨m-2£©2£¼0£¬
ËùÒÔ´æÔڦġʣ¨0£¬2]ʹµÃg£¨¦Ä£©=0£¬
¼´µ±m¡Ê£¨2£¬3]ʱ£¬MPÓëÇúÏßf£¨x£©ÓÐÒìÓÚM£¬PµÄ¹«¹²µã
×ÛÉÏ£¬tµÄ×îСֵΪ2£®
£¨¢ò£©ÀàËÆ£¨1£©ÓÚÖеĹ۲죬¿ÉµÃmµÄȡֵ·¶Î§Îª£¨1£¬3]£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˺¯Êýµ¼ÊýµÄ×ÛºÏÓ¦Ó㬱¾ÌâÊǺ¯ÊýµÄ×ÛºÏÌ⣬×ۺϿ¼²éÁËÀûÓõ¼ÊýÇóº¯ÊýµÄµ¥µ÷Çø¼ä£¬Çóº¯ÊýµÄ¼«Öµ£¬ÒÔ¼°´æÔÚÐÔÎÊÌ⣬ÓÐÒ»¶¨µÄÄѶȣ¬ÊÇÒ»µÀºÜºÃµÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһ죩ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸