曲线
,曲线
.自曲线
上一点
作
的两条切线切点分别为
.![]()
(1)若
点的纵坐标为
,求
;
(2)求
的最大值.
科目:高中数学 来源: 题型:解答题
已知:圆
过椭圆
的两焦点,与椭圆有且仅有两个公共点:直线
与圆
相切 ,与椭圆
相交于A,B两点记
(Ⅰ)求椭圆的方程;
(Ⅱ)求
的取值范围;
(Ⅲ)求
的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
过点
,离心率为
,左、右焦点分别为
、
.点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.设直线
、
的斜率分别为
、
.![]()
(i)证明:
;
(ii)问直线
上是否存在点
,使得直线
、
、
、
的斜率
、
、
、
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
。![]()
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
)。
求证:点
总在某定直线上。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
与
轴负半轴交于点
,
为椭圆第一象限上的点,直线
交椭圆于另一点
,椭圆左焦点为
,连接
交
于点D。
(1)如果
,求椭圆的离心率;
(2)在(1)的条件下,若直线
的倾斜角为
且△ABC的面积为
,求椭圆的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的右焦点为
,右准线为
,离心率为
,点
在椭圆上,以
为圆心,
为半径的圆与
的两个公共点是
.![]()
(1)若
是边长为
的等边三角形,求圆的方程;
(2)若
三点在同一条直线
上,且原点到直线
的距离为
,求椭圆方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
,
)的图象恒过定点
,椭圆
:
(
)的左,右焦点分别为
,
,直线
经过点
且与⊙
:
相切.
(1)求直线
的方程;
(2)若直线
经过点
并与椭圆
在
轴上方的交点为
,且
,求
内切圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系
和极坐标系
的原点与极点重合,
轴的正半轴与极轴重合,单位长度相同。已知曲线
的极坐标方程为
,曲线
的参数方程为![]()
,射线
,
,
与曲线
交于极点
以外的三点A,B,C.
(1)求证:
;
(2)当
时,B,C两点在曲线
上,求
与
的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com