精英家教网 > 高中数学 > 题目详情

有下列结论:
①若两条直线平行,则其斜率必相等;
②若两条直线的斜率乘积为-1, 则其必互相垂直;
③过点(-1,1),且斜率为2的直线方程是
④同垂直于x轴的两条直线一定都和y轴平行;
⑤若直线的倾斜角为,则
其中正确的结论有(    )。(填写序号)

练习册系列答案
  • 名师讲堂单元同步学练测系列答案
  • 名师面对面中考满分特训方案系列答案
  • 名师名卷单元月考期中期末系列答案
  • 初中总复习教学指南系列答案
  • 全程导航初中总复习系列答案
  • 中考分类必备全国中考真题分类汇编系列答案
  • 中考分类集训系列答案
  • 中考复习导学案系列答案
  • 中考复习信息快递系列答案
  • 中考复习指导基础训练稳夺高分系列答案
  • 年级 高中课程 年级 初中课程
    高一 高一免费课程推荐! 初一 初一免费课程推荐!
    高二 高二免费课程推荐! 初二 初二免费课程推荐!
    高三 高三免费课程推荐! 初三 初三免费课程推荐!
    相关习题

    科目:高中数学 来源: 题型:

    有下列结论:①若两条直线平行,则其斜率必相等;
    ②若两条直线的斜率乘积为-1,则其必互相垂直;
    ③过点(-1,1),且斜率为2的直线方程是
    y-1x+1
    =2

    ④同垂直于x轴的两条直线一定都和y轴平行;
    ⑤若直线的倾斜角为α,则0≤α≤π.
    其中正确的结论有
     
    (填写序号).

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2007•湛江二模)如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.
    (Ⅰ)建立适当的坐标系,求出该抛物线的方程;
    (Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;
    (Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l交于A、B两点,过A、B分别作l的垂线与圆

    C过F的切线交于点P和点Q,则P、Q必在以F为焦点,l为准线的同一条抛物线上.

    (Ⅰ)建立适当的坐标系,求出该抛物线的方程;

    (Ⅱ)对以上结论的反向思考可以得到另一个命题:

    “若过抛物线焦点F的直线与抛物线交于P、Q两点,

    则以PQ为直径的圆一定与抛物线的准线l相切”请

    问:此命题是否正确?试证明你的判断;

    (Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并

    证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为评分依据)

    查看答案和解析>>

    科目:高中数学 来源:2013届贵州省高一下学期期末考试数学 题型:选择题

    下列结论正确的是(    )

    (A)若直线平行于面内的无数条直线,则

    (B)过直线外一点有且只有一个平面和该直线平行

    (C)若直线∥直线,直线平面,则平行于内的无数条直线

    (D)若两条直线都和第三条直线垂直,则这两条直线平行

     

    查看答案和解析>>

    科目:高中数学 来源:2009-2010学年福建省三明市五校联考高二(上)期中数学试卷(必修2)(解析版) 题型:填空题

    有下列结论:①若两条直线平行,则其斜率必相等;
    ②若两条直线的斜率乘积为-1,则其必互相垂直;
    ③过点(-1,1),且斜率为2的直线方程是
    ④同垂直于x轴的两条直线一定都和y轴平行;
    ⑤若直线的倾斜角为α,则0≤α≤π.
    其中正确的结论有     (填写序号).

    查看答案和解析>>

    同步练习册答案