精英家教网 > 高中数学 > 题目详情
(2012•河南模拟)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4
5

(I)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求三棱锥C-PAB的体积.
分析:(Ⅰ)在△ABD中,由题意可得AD2+BD2=AB2,故AD⊥BD;由平面PAD⊥平面ABCD的性质定理可得,BD⊥平面PAD,最后由面面垂直的判定定理即可证得平面MBD⊥平面PAD;
(Ⅱ)过P作PO⊥AD交AD于O,则PO⊥平面ABCD,△PAD是边长为4的等边三角形,可求得PO=2
3
,由V棱锥C-PAB=V棱锥P-ABC即可求得答案.
解答:证明:(Ⅰ)∵在△ABD中,由于AD=4AB=4
5
,BD=8,
∴AD2+BD2=AB2
∴AD⊥BD,
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD?平面ABCD,
∴BD⊥平面PAD.…(4分)
又BD?平面MBD,
∴平面MBD⊥平面PAD.
(Ⅱ)过P作PO⊥AD交AD于O,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PO⊥平面ABCD.
∴PO为棱锥P-ABC的高.
又△PAD是边长为4的等边三角形,
∴PO=
3
2
×4=2
3

又S△ABC=S△ABD
=
1
2
•AD•BD
=16,
∴V棱锥C-PAB=V棱锥P-ABC
=
1
3
×16×2
3

=
32
3
3
点评:本题考查平面与平面垂直的判定,考查棱锥的体积,熟练掌握线面垂直、面面垂直的判定定理是解决问题的先决条件,注重锥体体积轮换公式的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河南模拟)如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)己知i为虚数单位,则
i
1+i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知a,b,c分别是△ABC的三个内角A,B,C的对边,若c=2,b=
3
,A+C=3B,则sinC=
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)若函数f(x)的导函数f′(x)=x2-4x+3,则使得函数f(x-1)单调递减的一个充分不必要条件是x∈(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)选修4-5:不等式选讲
设f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若关于x的不等式f(x)+|2t-3|≤0有解,求参数t的取值范围.

查看答案和解析>>

同步练习册答案