精英家教网 > 高中数学 > 题目详情
如图,在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=,M为AB的中点.

(1)证明AC⊥SB;

(2)求二面角S-CM-A的大小;

(3)求点B到平面SCM的距离.

解析:如图,

(1)取AC中点D,连结DS、DB.

∵SA=SC,BA=BC,

∴AC⊥DS且AC⊥DB.

∴AC⊥平面SDB.又SB平面SDB,∴AC⊥SB.

(2)∵SD⊥AC,平面SAC⊥平面ABC,

∴SD⊥平面ABC.

过D作DE⊥CM于E,连结SE,则SE⊥CM,

∴∠SED为二面角S—CM—A的平面角.

由已知有DEAM,∴DE=1.

又SA=SC=,AC=4,∴SD=2.

在Rt△SDE中,tan∠SED=,

∴二面角S—CM—A的大小为arctan2.

(3)在Rt△SDE中,,CM是边长为4的正△ABC的中线,

∴CM=.∴SSCM=CM·SE=.

设点B到平面SCM的距离为h,

由VB—SCM=VS—CMB,SD⊥平面ABC,

SSCM·h=SCMB·SD,∴

即点B到平面SCM的距离为.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案