精英家教网 > 高中数学 > 题目详情

【题目】设函数

求函数的单调区间和极值.

若函数在区间内恰有两个零点,求a的取值范围.

【答案】(1)见解析; (2)

【解析】

求出函数的导数,通过讨论a的范围,求出函数的单调区间和极值即可;

通过讨论a的范围,若满足在区间内恰有两个零点,需满足,解出即可.

,得

时,,函数上单调递增,函数无极大值,也无极小值;

时,由,得舍去

于是,当x变化时,的变化情况如下表:

x

0

递减

递增

所以函数的单调递减区间是,单调递增区间是

函数处取得极小值,无极大值.

综上可知,当时,函数的单调递增区间为,函数既无极大值也无极小值;

时,函数的单调递减区间是,单调递增区间为

函数有极小值,无极大值.

时,由知函数在区间上单调递增,

故函数在区间上至多有一个零点,不合题意.

时,由知,当时,函数单调递减;

时,函数单调递增,

所以函数上的最小值为

若函数在区间内恰有两个零点,

则需满足,即整理得,所以

故所求a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题正确的是(

①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;

②残差平方和越小的模型,拟合的效果越好;

③用相关指数来刻画回归效果,越小,说明模型的拟合的效果越好;

④随机误差是衡量预报精确度的一个量,它满足.

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程为,直线l的参数方程为为参数

,直线lx轴的交点为MN是圆C上一动点,求的最小值;

若直线l被圆C截得的弦长等于圆C的半径,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<2,函数f(x)(x2axa)ex.

1)当a1时,求f(x)的单调递增区间;

2)若f(x)的极大值是6e-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则的值为(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018115日上午,首届中国国际进口博览会拉开大幕,这是中国也是世界上首次以进口为主题的国家级博览会,本次博览会包括企业产品展、国家贸易投资展,其中企业产品展分为7个展区,每个展区统计了备受关注百分比,如下表:

展区类型

智能及高端装备

消费电子及家电

汽车

服装服饰及日用消费品

食品及农产品

医疗器械及医药保健

服务贸易

展区的企业数

400

60

70

650

1670

300

450

备受关注百分比

备受关注百分比指:一个展区中受到所有相关人士关注简称备受关注的企业数与该展区的企业数的比值.

(1)从企业产品展7个展区的企业中随机选取1家,求这家企业是选自“智能及高端装备”展区备受关注的企业的概率;

(2)某电视台采用分层抽样的方法,在“消费电子及家电”展区备受关注的企业和“医疗器械及医药保健”展区备受关注的企业中抽取6家进行了采访,若从受访企业中随机抽取2家进行产品展示,求恰有1家来自于“医疗器械及医药保健”展区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.① 若,则的极小值为___; ② 若存在使得方程无实根,则的取值范围是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,顶点为原点的抛物线,它是焦点为椭圆的右焦点.

(1)求抛物线的标准方程;

(2)过抛物线的焦点作互相垂直的两条直线分别交抛物线四点,求四边形的面积的最小值.

查看答案和解析>>

同步练习册答案