精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.
【答案】分析:(Ⅰ)抛物线的准线为 ,于是 ,p=2,由此可知抛物线方程为y2=4x.
(Ⅱ)由题意得B,M的坐标,,直线FA的方程,直线MN的方程,由此可知点N的坐标即可;
(Ⅲ)由题意得,圆M的圆心坐标为(0,2),半径为2.当m=4时,直线AP的方程为x=4,此时,直线AP与圆M相离;当m≠4时,写出直线AP的方程,圆心M(0,2)到直线AP的距离,由此可判断直线AP与圆M的位置关系.
解答:解:(1)抛物线,∴p=2.
∴抛物线方程为y2=4x.
(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),
又∵F(1,0),∴,∴
则FA的方程为y=(x-1),MN的方程为.*k*s*5*u
解方程组,∴
(3)由题意得,圆M的圆心是点(0,2),半径为2.
当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离,
当m≠4时,直线AK的方程为,即为4x-(4-m)y-4m=0,
圆心M(0,2)到直线AK的距离,令d>2,解得m>1∴当m>1时,直线AK与圆M相离;
当m=1时,直线AK与圆M相切;
当m<1时,直线AK与圆M相交.
点评:本题考查抛物线的标准方程、抛物线的简单性质、直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案