精英家教网 > 高中数学 > 题目详情

(本小题共13分)

设数列的通项公式为. 数列定义如下:对于正整数m是使得不等式成立的所有n中的最小值。

(Ⅰ)若,求

(Ⅱ)若,求数列的前2m项和公式;w.w.w.k.s.5.u.c.o.m    

(Ⅲ)是否存在pq,使得?如果存在,求pq的取值范围;如果不存在,请说明理由。

(Ⅰ)

(Ⅱ)

(Ⅲ)存在,pq的取值范围分别是


解析:

本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、

分类讨论等数学思想方法。本题是数列与不等式综合的较难层次题。

(Ⅰ)由题意,得,解,得

成立的所有n中的最小整数为7,即

(Ⅱ)由题意,得

对于正整数,由,得

根据的定义可知

时,;当时,

                

                

(Ⅲ)假设存在pq满足条件,由不等式

,根据的定义可知,对于任意的正整数m 都有

,即对任意的正整数m都成立。

     当(或)时,得(或),

      这与上述结论矛盾。 

    当,即时,得,解得.

     ∴ 存在pq,使得

pq的取值范围分别是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数

   (I)若x=1为的极值点,求a的值;

   (II)若的图象在点(1,)处的切线方程为

(i)求在区间[-2,4]上的最大值;

(ii)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011届北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题


(本小题共13分)
已知函数
(Ⅰ)若处取得极值,求a的值;
(Ⅱ)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题

(本小题共13分)

已知向量,设函数.

(Ⅰ)求函数上的单调递增区间;

(Ⅱ)在中,分别是角的对边,为锐角,若的面积为,求边的长.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.

(Ⅰ)求分别获得一、二、三等奖的概率;

(Ⅱ)设摸球次数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题

(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

同步练习册答案