【题目】设函数f(x)为奇函数,且当x≥0时,f(x)=ex﹣cosx,则不等式f(2x﹣1)+f(x﹣2)>0的解集为( )
A.(﹣∞,1)B.(﹣∞,
)C.(
,+∞)D.(1,+∞)
【答案】D
【解析】
由函数的解析式求出其导数,分析可得f(x)在[0,+∞)上为增函数,结合函数的奇偶性分析可得f(x)在R上为增函数,据此可得原不等式等价于2x﹣1>2﹣x,解出x的取值范围,即可得答案.
由题知,当x≥0时,f(x)=ex﹣cosx,此时有
=ex+sinx>0,则f(x)在[0,+∞)上为增函数,
又由f(x)为奇函数,则f(x)在区间(﹣∞,0]上也为增函数,
故f(x)在R上为增函数.
由f(2x﹣1)+f(x﹣2)>0,可得f(2x﹣1)>﹣f(x﹣2),
而函数f(x)为奇函数,可得到f(2x﹣1)>f(2﹣x),
又f(x)在R上为增函数,有2x﹣1>2﹣x,解得x>1,
即不等式的解集为(1,+∞).
故选:D
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图(如图①)、90后从事互联网行业岗位分布条形图(如图②),则下列结论中不一定正确的是( )
![]()
注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中从事技术岗位的人数超过总人数的20%
C.互联网行业中从事运营岗位的人数90后比80前多
D.互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)在(1)中,设曲线
经过伸缩变换
得到曲线
,设曲线
上任意一点为
,当点
到直线
的距离取最大值时,求此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且经过点
,两个焦点分别为
.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
相交于
两点,若
的内切圆半径为
,求以
为圆心且与直线
相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
,其中
是自然对数的底数.
(1)求曲线
在点
处的切线方程;
(2)设函数
(![]()
),讨论
的单调性;
(3)若对任意
,恒有关于
的不等式
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com