【题目】已知函数
.
(1)求证:f(x)在(-∞,0)上是增函数;
(2)若
,求
在
上的最值.
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛,问高几何?”其意思为:“今有一个长方体(记为
)的粮仓,宽3丈(即
丈),长4丈5尺,可装粟一万斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则下列判断正确的是__________.(填写所有正确结论的编号)
①该粮仓的高是2丈;
②异面直线
与
所成角的正弦值为
;
③长方体
的外接球的表面积为
平方丈.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按分层抽样的方法获得了部分学生一周的锻炼时间(单位:h),数据如下,
甲 | 6 | 6.5 | 7 | 7.5 | 8 | |||
乙 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
丙 | 3 | 4.5 | 6 | 7.5 | 9 | 10.5 | 12 | 13.5 |
(1)求三个班中学生人数之比;
(2)估计这个学校高一年级学生中,一周的锻炼时间超过10h的百分比;
(3)估计这个学校高一年级学生一周的平均锻炼时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入
(单位:万元)满足
,乙城市收益Q与投入
(单位:万元)满足
,设甲城市的投入为
(单位:万元),两个城市的总收益为
(单位:万元).
(1)当甲城市投资50万元时,求此时公司总收益;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.
(1)打进的电话在响5声之前被接的概率是多少?
(2)打进的电话响4声而不被接的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读:
已知
、
,
,求
的最小值.
解法如下:
,
当且仅当
,即
时取到等号,
则
的最小值为
.
应用上述解法,求解下列问题:
(1)已知
,
,求
的最小值;
(2)已知
,求函数
的最小值;
(3)已知正数
、
、
,
,
求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(0,-2),椭圆E:
的离心率为
,F是椭圆E的右焦点,直线PF的斜率为2,O为坐标原点.
(1)求椭圆E的方程;
(2)直线l被圆O:x2+y2=3截得的弦长为3,且与椭圆E交于A、B两点,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验列联表:
患病 | 未患病 | 总计 | |
服用药 | 10 | 45 | 55 |
没服用药 | 20 | 30 | 50 |
总计 | 30 | 75 | 105 |
经过计算,
,根据这一数据分析,下列说法正确的是
临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有97.5%的把握认为服药情况与是否患病之间有关系
B. 有99%的把握认为服药情况与是否患病之间有关系
C. 有99.5%的把握认为服药情况与是否患病之间有关系
D. 没有理由认为服药情况与是否患病之间有关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
为椭圆
:
上异于点A,B的任意一点.
(Ⅰ)求证:直线
、
的斜率之积为
-;
(Ⅱ)是否存在过点
的直线
与椭圆
交于不同的两点
、
,使得
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com