精英家教网 > 高中数学 > 题目详情

给出下列结论.
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②将函数数学公式的图象上每个点的横坐标缩短为原来的数学公式(纵坐标不变),再向左平行移动数学公式个单位长度变为函数数学公式的图象;
③已知ξ~N(16,σ2),若P(ξ>17)=0.35,则P(15<ξ<16)=0.15;
④已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是数学公式
其中真命题的序号是________(把所有真命题的序号都填上).

①③
分析:①直接把语句进行否定即可,注意否定时?对应?,>对应≤.
②先进行ω伸缩变换,再根据左加右减的性质先左右平移即可得到答案.
③根据随机变量ξ服从标准正态分布N(16,σ2),得到正态曲线关于ξ=16对称,得到变量小于15的概率,这样要求的概率是用0.5减去P(ξ>17)的值即得.
④画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b化为关于a的一元函数,利用函数单调性求函数的值域即可.
解答:①根据题意我们直接对语句进行否定,
命题“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;正确.
②:由=sinx的图象上每个点的横坐标缩短为原来的(纵坐标不变),得到y=sin2x,
再向左平行移动个单位长度变为函数y=sin2(x+)=sin(2x+).
故不正确.
③:∵随机变量ξ服从标准正态分布N(16,σ2),
∴正态曲线关于ξ=16对称,
∵P(ξ>17)=0.35
若P(ξ<15)=0.35,
则P(15<ξ<16)=0.5-0.35=0.15,正确;
④:画出y=|lgx|的图象如图:
∵0<a<b,且f(a)=f(b),
∴|lga|=|lgb|且0<a<1,b>1
∴-lga=lgb
即ab=1
∴y=a+2b=a+,a∈(0,1)
∵y=a+在(0,1)上为减函数,
∴y>1+2=3
∴a+2b的取值范围是(3,+∞),故不正确.
故答案为:①③
点评:本题考查函数的变换,函数的单调性,特称命题,正态分布曲线的特点及曲线所表示的意义,考查学生分析问题解决问题的能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使sinx=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是(  )
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使sin x=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题“非p∨q”是真命题;④命题“非p∨非q”是假命题、其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5、已知命题p:?x0∈R,使log2x0>0命题q:?x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题②命题“p∧¬q”是假命题
③命题“¬p∪q”是真命题;④命题“¬p∪¬q”是假命题
其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①命题p:a>
2
3
时,函数y=(3a-1)x在(-∞,+∞)上是增函数;命题q:n∈N*,时,函数y=xn在(-∞,+∞)上是增函数,则命题p∧q是真命题;
②命题“若lgx>lgy,则x>y”的逆命题是真命题;
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,“若l1⊥l2,则
a
b
=-3”是假命题;
④设α、β是两个不同的平面,a、b是两条不同的直线.“若a∥α,b∥β,a∥b,则α∥β”是假命题.
其中正确结论的序号是
 
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案