【题目】已知动圆
与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
;设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
两个不同的点.
(1)求曲线
的方程;
(2)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记
的面积为
,
的面积为
,令
,求
的最大值.
【答案】(1)
(2)
(3)![]()
【解析】
试题分析:(1)根据两圆相切得圆心距与半径之间关系:
,消去半径得
,符合椭圆定义,由定义可得轨迹方程(2)探究问题,实质是计算问题,即利用坐标求
和
的比值:根据直线方程与椭圆方程联立方程组,利用两点间距离公式及韦达定理、弦长公式可得
和
的表达式,两式相比即得比值
(3)因为
的面积
的面积,所以
,利用原点到直线距离得三角形的高,而底为弦长MN(2中已求),可得面积表达式,为一个分式函数,结合变量分离法(整体代换)、基本不等式求最值
试题解析:解:(1)设圆心
的坐标为
,半径为
,
由于动圆
一圆
相切,且与圆
相内切,所以动圆
与圆
只能内切
∴![]()
∴圆心
的轨迹为以
为焦点的椭圆,其中
,
∴![]()
故圆心
的轨迹
.
(2)设
,直线
,则直线
,
由
可得:
,∴
,
∴
由
可得:
,
∴
,
∴![]()
.
∴![]()
∴
和
的比值为一个常数,这个常数为
.
(3)∵
,∴
的面积
的面积,∴
,
∵
到直线
的距离
,
∴
.1
令
,则
,
,
∵
(当且仅当
,即
,亦即
时取等号)
∴当
时,
取最大值
.1
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
,焦点
,
为坐标原点,直线
(不垂直
轴)过点
且与抛物线
交于
两点,直线
与
的斜率之积为
.
(1)求抛物线
的方程;
(2)若
为线段
的中点,射线
交抛物线
于点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题
对任意实数
,不等式
恒成立;命题
方程
表示焦点在
轴上的双曲线.
(1)若命题
为真命题,求实数
的取值范围;
(2)若命题:“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | -5 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将
图象上所有点向左平行移动
个单位长度,得到
的图象,求
的图象离原点O最近的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com