精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=cos($\frac{2π}{3}$x)+(a-1)sin($\frac{π}{3}$x)+a,g(x)=2x-x2,若f[g(x)]≤0对x∈[0,1]恒成立,则实数a的取值范围是(  )(参考公式:cos(2α)=cos2α-sin2α=2cos2α-1=1-2sin2α)
A.(-∞,$\sqrt{3}$-1]B.(-∞,0]C.[0,$\sqrt{3}$-1]D.(-∞,1-$\sqrt{3}$]

分析 在同一坐标系内画出函数$y={x}^{2}+1,y={2}^{x},y={x}^{2}+\frac{3}{2}$的图象,可得$1≤{2}^{x}-{x}^{2}<\frac{3}{2}$,换元后分离参数a,求出函数值域得答案.

解答 解:在同一坐标系内画出函数$y={x}^{2}+1,y={2}^{x},y={x}^{2}+\frac{3}{2}$的图象如图:

由图可知,在x∈[0,1]上,${x}^{2}+1≤{2}^{x}<{x}^{2}+\frac{3}{2}$恒成立,
即$1≤{2}^{x}-{x}^{2}<\frac{3}{2}$,当且仅当x=0或x=1时等号成立.
∴1≤g(x)<$\frac{3}{2}$.设g(x)=t,则1$≤t<\frac{3}{2}$.
f[g(x)]≤0等价于f(t)≤0,
即cos($\frac{2π}{3}$t)+(a-1)sin($\frac{π}{3}$t)+a≤0,
∵1$≤t<\frac{3}{2}$,∴$\frac{π}{3}t$∈[$\frac{π}{3},\frac{π}{2}$),
再设sin$\frac{π}{3}t$=m,则$\frac{\sqrt{3}}{2}≤m<1$,
则原不等式可化为$1-2si{n}^{2}\frac{π}{3}t+(a-1)sin\frac{π}{3}t+a≤0$,
即1-2m2+(a-1)m+a≤0,
∴a$≤\frac{2{m}^{2}+m-1}{m+1}=2m-1$.
而$\sqrt{3}-1≤2m<1$,∴a$≤\sqrt{3}-1$.
故选:A.

点评 本题考查恒成立问题,考查三角函数的图象和性质,体现了数形结合的解题思想方法,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-1),|$\overrightarrow{b}$|=1,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=ln(1+x)-\frac{x}{{{{(1+x)}^a}}}$,实数a>0.
(Ⅰ)若a=2时,求函数f(x)的单调区间;
(Ⅱ)若x>0时,不等式f(x)<0恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,A=60°,AC=2,记BC=a,若△ABC是唯一确定的锐角三角形,则a的取值范围是[2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1,AB⊥AN,CB=BA=AN=$\frac{1}{2}$BB1
(1)求证:BN⊥平面C1B1N;
(2)求二面角C-C1N-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)计算由直线y=x-4,曲线y=$\sqrt{2x}$以及x轴所围图形的面积S.
(Ⅱ)试判断$\sqrt{6}$+$\sqrt{7}$和2$\sqrt{2}$+$\sqrt{5}$的大小,并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复平面上平行四边形ABCD的四个顶点中,A、B、C所对应的复数分别为2-3i、-2-3i、-3+2i,则D点对应的复数是(  )
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为(  )
A.85,86B.85,85C.86,85D.86,86

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于θ的方程$\sqrt{3}sinθ+cosθ+a=0$在区间(0,2π)上有两个不相等的实数根α、β,则sin(α+β)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

同步练习册答案