精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ∥平面DD1C1C;
(2)求线段PQ的长;
(3)求PQ与平面AA1D1D所成的角.
分析:(1)直接由三角形中位线定理得线线平行,从而得线面平行;
(2)直接由三角形中位线等于底边的一半得答案;
(3)由PQ∥DC1,∴PQ、DC1与平面AA1D1D所成的角相等,而DC1与平面AA1D1D所成的角为∠C1DD1=45°,则答案可求.
解答:(1)证明:如图,
连接A1C1,DC1,则Q为A1C1的中点,
∴PQ∥DC1,且PQ=
1
2
DC1
∴PQ∥平面DD1C1C;
(2)解:∵正方体ABCD-A1B1C1D1的棱长为1,
DC1=
2

∴PQ=
1
2
DC1=
2
2

(3)解:∵PQ∥DC1,∴PQ、DC1与平面AA1D1D所成的角相等,
∵DC1与平面AA1D1D所成的角为∠C1DD1=45°,
∴PQ与平面AA1D1D所成的角为45°.
点评:本题考查了直线与平面平行的判定,考查了线面角的计算,训练了空间中点线面间的距离的计算,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案