精英家教网 > 高中数学 > 题目详情
(2013•徐州模拟)已知数列{an},其前n项和为Sn
(1)若对任意的n∈N,a2n-1,a2n+1,a2n组成公差为4的等差数列,且a1=1,
S2n
2n
=2013
,求n的值;
(2)若数列{
Sn
an
+a
}是公比为q(q≠-1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为q=1+
1
a
分析:(1)依题意,可求得a2n+1-a2n-1=4,a2n=a2n-1+8(n∈N*),从而得a1,a3,a5,…a2n-1,a2n+1是公差为4的等差数列,且a2+a4+a6+…+a2n=a1+a3+…+a2n-1+8n,于是可求Sn=2n(2n+3),
S2n
2n
=2013即可求得n的值;
(2)由
Sn
an
+a=(a+1)qn-1,可求得Sn=(a+1)qn-1an-aan,Sn+1=(a+1)qnan+1-aan+1,两式相减得(a+1)(1-qn)an+1=[a-(a+1)qn-1]an,若q=1+
1
a
,可证得数列{an}为等比数列,(充分性);若数列{an}为等比数列,可证得q=1+
1
a
,(必要性).
解答:解:(1)因为a2n-1,a2n+1,a2n组成公差为4的等差数列,
所以a2n+1-a2n-1=4,a2n=a2n-1+8(n∈N*),…(2分)
所以a1,a3,a5,…a2n-1,a2n+1是公差为4的等差数列,且a2+a4+a6+…+a2n=a1+a3+…+a2n-1+8n,…(4分)
又因为a1=1,
所以S2n=2(a1+a3+…+a2n-1)+8n
=2[n+
n(n-1)
2
×4]+8n=4n2+6n=2n(2n+3),
所以
S2n
2n
=2n+3=2013,所以n=1005.…(6分)
(2)因为
Sn
an
+a=(a+1)qn-1,所以Sn=(a+1)qn-1an-aan,①
所以Sn+1=(a+1)qnan+1-aan+1,②
②-①,得(a+1)(1-qn)an+1=[a-(a+1)qn-1]an,③…(8分)
(ⅰ)充分性:因为q=1+
1
a
,所以a≠0,q≠1,a+1≠aq,代入③式,得
q(1-qn)an+1=(1-qn)an,因为q≠-1,q≠1,
所以
an+1
an
=
1
q
,n∈N*,所以{an}为等比数列,…(12分)
(ⅱ)必要性:设{an}的公比为q0,则由③得(a+1)(1-qn)q0=a-(a+1)qn-1
整理得(a+1)q0-a=(a+1)(q0-
1
q
)qn,…(14分)
此式为关于n的恒等式,若q=1,则左边=0,右边=-1,矛盾;
若q≠±1,当且仅当
(a+1)q0=a
(a+1)q0=(a+1)
1
q
时成立,所以q=1+
1
a

由(ⅰ)、(ⅱ)可知,数列{an}为等比数列的充要条件为q=1+
1
a
.…(16分)
点评:本题考查等差数列与等比数列的综合,考查等差数列的求和与等比数列的分析确定,考查充分必要条件的推理论证,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•徐州模拟)设中心在原点的双曲线与椭圆
x22
+y2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是
2x2-2y2=1
2x2-2y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知样本7,8,9,x,y的平均数是8,且xy=60,则此样本的标准差是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)设i是虚数单位,复数
1+ai3-i
为纯虚数,则实数a的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知某算法的伪代码如图,根据伪代码,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围是
(-∞,0)∪{1}
(-∞,0)∪{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)已知cos(
3π+α
2
)=-
2
3
,则cos2α=
-
79
81
-
79
81

查看答案和解析>>

同步练习册答案