如图,已知
为平面上的两个定点,
为动点,
,
且
,
(
是
和
的交点)
![]()
⑴建立适当的平面直角坐标系求出点
的轨迹方程;
⑵若点
的轨迹上存在两个不同的点
,且线段
的中垂线与
(或
的延长线)相交于一点
,证明:
(
为
的中点)
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| q | p |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知圆
与
轴负半轴的交点为
. 由点
出发的射线
的斜率为
. 射线
与圆
相交于另一点![]()
![]()
(1)当
时,试用
表示点
的坐标;
(2)当
时,求证:“射线
的斜率
为有理数”是“点
为单位圆
上的有理点”的充要条件;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
,其中
、
均为整数且
、
互质)
(3)定义:实半轴长
、虚半轴长
和半焦距
都是正整数的双曲线为“整勾股双曲线”.
当
为有理数且
时,试证明:一定能构造偶数个“整勾股双曲线”(规定:实轴长和虚轴长都对应相等的双曲线为同一个双曲线),它的实半轴长、虚半轴长和半焦距的长恰可由点
的横坐标、纵坐标和半径
的数值构成. 说明你的理由并请尝试给出构造方法.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省六安市徐集中学高三(上)摸底数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2010年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com