精英家教网 > 高中数学 > 题目详情
精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1=
7
,点D是BC的中点,点E在AC上,且DE⊥A1E.
(1)证明:平面A1DE⊥平面ACC1A1
(2)求直线AD和平面A1DE所成角的正弦值.
分析:(1)先由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC,?DE⊥AA1.再由DE⊥A1E?DE⊥平面ACC1A1.即可得出结论;
(2)设O是AC的中点.先建立一个以O为原点建立空间直角坐标系,得到相关各点的坐标.再利用线面角的求法在空间直角坐标系内找到直线AD和平面A1DE所成角的正弦值即可.
解答:精英家教网解:(1)证明:如图所示,由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.
又DE?平面ABC,
所以DE⊥AA1
而DE⊥A1E.AA1∩A1E=A1
所以DE⊥平面ACC1A1
又DE?平面A1DE,
故平面A1DE⊥平面ACC1A1

精英家教网(2)如图所求,设O是AC的中点,以O为原点建立空间直角坐标系,
则相关各点的坐标分别是
A(2,0,0),A1(2,0,
7
),D(-1,
3
,0),E(-1,0,0).
易知
A1D
=(-3,
3
,-
7
),
DE
=(0,-
3
,0),
AD
=(-3,
3
,0).
设n=(x,y,z)是平面A1DE的一个法向量,
解得x=-
7
3
z,y=0.
故可取n=(
7
,0,-3).
于是cos<?n,A>?═
-3
7
4×2
3

=-
21
8

由此即知,直线AD和平面A1DE所成角的正弦值为
21
8
点评:本题考查平面和平面垂直的判定和性质.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小为60°,则点C到平面C1AB的距离为(  )
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1CC1所成的角为a,则sina=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,D、E、G分别是AB、BB1、AC1的中点,AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在点F使GF∥DE?如果存在,试确定它的位置;如果不存在,请说明理由;
(Ⅱ)求截面DEG与底面ABC所成锐二面角的正切值;
(Ⅲ)求B1到截面DEG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中点,点N在AA1上,AN=
14

(Ⅰ)求BC1与侧面ACC1A1所成角的大小;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)证明MN⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.

查看答案和解析>>

同步练习册答案